Phytochrome A and B Regulate Primary Metabolism in Arabidopsis Leaves in Response to Light

نویسندگان

  • Xiaozhen Han
  • Takayuki Tohge
  • Pierce Lalor
  • Peter Dockery
  • Nicholas Devaney
  • Alberto A. Esteves-Ferreira
  • Alisdair R. Fernie
  • Ronan Sulpice
چکیده

Primary metabolism is closely linked to plant productivity and quality. Thus, a better understanding of the regulation of primary metabolism by photoreceptors has profound implications for agricultural practices and management. This study aims at identifying the role of light signaling in the regulation of primary metabolism, with an emphasis on starch. We first screened seven cryptochromes and phytochromes mutants for starch phenotype. The phyAB mutant showed impairment in starch accumulation while its biomass, chlorophyll fluorescence parameters, and leaf anatomy were unaffected, this deficiency being present over the whole vegetative growth period. Mutation of plastidial nucleoside diphosphate kinase-2 (NDPK2), acting downstream of phytochromes, also caused a deficit in starch accumulation. Besides, the glucose-1-phosphate adenylyltransferase small subunit (APS1) was down-regulated in phyAB. Those results suggest that PHYAB affect starch accumulation through NDPK2 and APS1. Then, we determined changes in starch and primary metabolites in single phyA, single phyB, double phyAB grown in light conditions differing in light intensity and/or light spectral content. PHYA is involved in starch accumulation in all the examined light conditions, whereas PHYB only exhibits a role under low light intensity (44 ± 1 μmol m-2 s-1) or low R:FR (11.8 ± 0.6). PCA analysis of the metabolic profiles in the mutants and wild type (WT) suggested that PHYB acts as a major regulator of the leaf metabolic status in response to light intensity. Overall, we propose that PHYA and PHYB signaling play essential roles in the control of primary metabolism in Arabidopsis leaves in response to light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

phytochrome B and PIF4 Regulate Stomatal Development in Response to Light Quantity

Stomata are pores on the surfaces of leaves that regulate gas exchange between the plant interior and the atmosphere [1]. Plants adapt to changing environmental conditions in the short term by adjusting the aperture of the stomatal pores, whereas longer-term changes are accomplished by altering the proportion of stomata that develop on the leaf surface [2, 3]. Although recent work has identifie...

متن کامل

phytochrome B Is Required for Light-Mediated Systemic Control of Stomatal Development

Stomata are pores found on the surfaces of leaves, and they regulate gas exchange between the plant and the environment [1]. Stomatal development is highly plastic and is influenced by environmental signals [2]. Light stimulates stomatal development, and this response is mediated by plant photoreceptors [3-5], with the red-light photoreceptor phytochrome B (phyB) having a dominant role in white...

متن کامل

Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B.

Up to three gibberellin (GA) 20-oxidase genes have now been cloned from several species including Arabidopsis, bean (Phaseolus vulgaris), and potato (Solanum tuberosum). In each case the GA 20-oxidase genes exhibit different patterns of tissue expression. We have performed extensive northern analysis on one of the potato GA 20-oxidase genes (StGA20ox1), which is the only one that shows signific...

متن کامل

Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles.

Light is one of the most important environmental factors that determine the timing of a plant's transition from the vegetative to reproductive, or flowering, phase. Not only daylength but also the spectrum of light greatly affect flowering. The shade of nearby vegetation reduces the ratio of red to far-red light and can trigger shade avoidance responses, including stem elongation and the accele...

متن کامل

The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis.

Members of the Bric-a-Brac/Tramtrack/Broad Complex (BTB) family direct the selective ubiquitylation of proteins following their assembly into Cullin3-based ubiquitin ligases. Here, we describe a subfamily of nucleus-localized BTB proteins encoded by the LIGHT-RESPONSE BTB1 (LRB1) and LRB2 loci in Arabidopsis (Arabidopsis thaliana) that strongly influences photomorphogenesis. Whereas single lrb1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017